Comportamiento del consumidor en el turismo electrónico: Exploración de nuevas aplicaciones del aprendizaje automático en los estudios de turismo
DOI:
https://doi.org/10.14198/INTURI.24629Palabras clave:
turismo electrónico, reservas en línea, comportamiento del consumidor, big data, regresión logística, aprendizaje automático, comportamiento dinámicoResumen
Los mercados digitales han alterado la forma en que interactúan los agentes económicos y han cambiado el comportamiento de los turistas. Además, la pandemia de COVID-19 ha demostrado que es necesario monitorear la evolución del comportamiento del consumidor digital y los factores que influyen en él, ya que son elementos dinámicos que evolucionan en el tiempo. Este artículo analiza las desigualdades digitales y valida los principales factores que influyen en los turistas para reservar servicios turísticos en línea. Esta investigación utiliza un conjunto de microdatos con 69.752 y 23.779 observaciones para analizar el modo de reserva de los servicios de alojamiento y transporte, respectivamente, obtenidos de la Encuesta de Turismo de Residentes del Instituto Nacional de Estadística durante el periodo 2016-2021. El artículo confirma variaciones en el perfil del consumidor online y en las características del viaje. Uno de los hallazgos más relevantes es la reducción de la brecha generacional en la contratación online de servicios turísticos. Sin embargo, subsisten desigualdades digitales, como las desigualdades regionales y otras basadas en el nivel de estudios y los ingresos de los turistas. También se destaca que diferentes tipos de viajes, dependiendo del destino, el tipo de alojamiento o transporte, tienen una propensión diferente a reservarse a través de canales de compra digitales. La accesibilidad a las fuentes de big data y los avances recientes en los modelos de aprendizaje automático también han hecho evolucionar las metodologías para analizar el comportamiento del consumidor digital y deben incorporarse a los estudios de turismo. Este estudio compara el rendimiento predictivo de diferentes metodologías en el contexto del turismo electrónico. En particular, evaluamos la potencial capacidad predictiva que podría obtenerse usando técnicas de aprendizaje automático para explicar el comportamiento del consumidor en e-Tourism y lo usamos como punto de referencia para compararlo con los resultados obtenidos usando métodos estadísticos tradicionales. Las métricas de evaluación predictivas seleccionadas muestran que el modelo estadístico de regresión logística mejora la capacidad predictiva de la red neuronal Multilayer Perceptron y presenta valores muy cercanos la máxima capacidad predictiva alcanzada por el algoritmo Random Forest.
Financiación
National University of Distance Education (Spain) under Grant [BICI N.3, October 21, 2019].Citas
Aeknarajindawat, N. (2019). The factors influencing tourists’ online hotel reservations in Thailand: An empirical study. International Journal of Innovation, Creativity and Change, 10(1), 121–136.
Ajzen, I. (1985). From Intentions to Actions: A Theory of Planned Behavior. In Action Control (pp. 11–39). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-69746-3_2
Ali, B. J. (2020). Impact of COVID-19 on Consumer Buying Behavior Toward Online Shopping in Iraq. Economic Studies Journal, 18(42), 267–280. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3729323
Alsayat, A. (2023). Customer decision-making analysis based on big social data using machine learning: a case study of hotels in Mecca. Neural Computing and Applications, 35(6), 4701–4722. https://doi.org/10.1007/S00521-022-07992-X
Aluri, A., Price, B. S., & McIntyre, N. H. (2019). Using Machine Learning To Cocreate Value Through Dynamic Customer Engagement In A Brand Loyalty Program. Journal of Hospitality & Tourism Research, 43(1), 78–100. https://doi.org/10.1177/1096348017753521
Amaro, S., & Duarte, P. (2013). Online travel purchasing: A literature review. Journal of Travel and Tourism Marketing, 30(8), 755–785. https://doi.org/10.1080/10548408.2013.835227
Amaro, S., & Duarte, P. (2015). An integrative model of consumers’ intentions to purchase travel online. Tourism Management, 46, 64–79. https://doi.org/10.1016/j.tourman.2014.06.006
Arefieva, V., Egger, R., & Yu, J. (2021). A machine learning approach to cluster destination image on Instagram. Tourism Management, 85, 104318. https://doi.org/10.1016/j.tourman.2021.104318
Bigné, E., Oltra, E., & Andreu, L. (2019). Harnessing stakeholder input on Twitter: A case study of short breaks in Spanish tourist cities. Tourism Management, 71, 490–503. https://doi.org/10.1016/j.tourman.2018.10.013
Boto-García, D., Zapico, E., Escalonilla, M., & Baños-Pino, J. F. (2021). Tourists’ preferences for hotel booking. International Journal of Hospitality Management, 92, 102726. https://doi.org/10.1016/j.ijhm.2020.102726
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Buhalis, D., & Law, R. (2008). Progress in information technology and tourism management: 20 years on and 10 years after the Internet-The state of eTourism research. Tourism Management, 29(4), 609–623. https://doi.org/10.1016/j.tourman.2008.01.005
Buhalis, D., Leung, D., & Law, R. (2011). eTourism: Critical information and communication technologies for tourism destinations. Destination Marketing and Management: Theories and Applications, 205–224. https://doi.org/10.1079/9781845937621.0205
Chen, J. S., & Hsu, C. H. C. (1999). The Use of Logit Analysis to Enhance Market Segmentation Methodology. Journal of Hospitality & Tourism Research, 23(3), 268–283. https://doi.org/10.1177/109634809902300303
Chen, J., Zhang, Y., Zhu, S., & Liu, L. (2021). Does covid-19 affect the behavior of buying fresh food? Evidence from Wuhan, China. International Journal of Environmental Research and Public Health, 18(9), 4469. https://doi.org/10.3390/ijerph18094469
Chiang, W. Y. K., Zhang, D., & Zhou, L. (2006). Predicting and explaining patronage behavior toward web and traditional stores using neural networks: A comparative analysis with logistic regression. Decision Support Systems, 41(2), 514–531. https://doi.org/10.1016/j.dss.2004.08.016
CNMC. (2021). e-Commerce statistics in Spain. http://data.cnmc.es/datagraph/
Coenders, G., Ferrer-Rosell, B., & Martínez-García, E. (2016). Trip Characteristics and Dimensions of Internet Use for Transportation, Accommodation, and Activities Undertaken at Destination. Journal of Hospitality Marketing and Management, 25(4), 498–511. https://doi.org/10.1080/19368623.2015.1034827
Dang, H. D., & Pham, T. T. (2021). Predicting Contract Participation in the Mekong Delta, Vietnam: A Comparison between the Artificial Neural Network and the Multinomial Logit Model. Journal of Agricultural and Food Industrial Organization, 20(2), 135–147. https://doi.org/10.1515/jafio-2020-0023
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Information Systems, 13(3), 319–339. https://doi.org/10.2307/249008
Del Rio-Chanona, M. R., Mealy, P., Pichler, A., Lafond, F., & Doyne Farmer, J. (2020). Supply and demand shocks in the COVID-19 pandemic: an industry and occupation perspective. Oxford Review of Economic Policy, 36(Supplement_1), S94–S137. https://doi.org/10.1093/oxrep/graa033
Desplas, N., & Mao, M. (2014). Parallel analysis between e-tourism and e-government: evolution and trends. Investigaciones Turísticas, 7, 1–22.
Din, A. U., Han, H., Ariza-Montes, A., Vega-Muñoz, A., Raposo, A., & Mohapatra, S. (2022). The Impact of COVID-19 on the Food Supply Chain and the Role of E-Commerce for Food Purchasing. Sustainability, 14(5). https://doi.org/10.3390/SU14053074
Dsouza, D., & Sharma, D. (2021). Online food delivery portals during COVID-19 times: An analysis of changing consumer behavior and expectations. International Journal of Innovation Science, 13(2), 218–232. https://doi.org/10.1108/IJIS-10-2020-0184
Ellies-Oury, M. P., Chavent, M., Conanec, A., Bonnet, M., Picard, B., & Saracco, J. (2019). Statistical model choice including variable selection based on variable importance: A relevant way for biomarkers selection to predict meat tenderness. Scientific Reports, 9(1). https://doi.org/10.1038/S41598-019-46202-y
Femenia-Serra, F., Perles-Ribes, J. F., & Ivars-Baidal, J. A. (2019). Smart destinations and tech-savvy millennial tourists: hype versus reality. Tourism Review, 74(1), 63–81. https://doi.org/10.1108/TR-02-2018-0018
Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Addison-Wesley.
Fudenberg, D., Kleinberg, J., Liang, A., & Mullainathan, S. (2022). Measuring the Completeness of Economic Models. Journal of Political Economy, 130(4), 956–990. https://doi.org/10.1086/718371
Gardella, N. B., Díaz, A. P. O., & Hernández, J. C. R. (2021). Tourist preferences in hotels and destinations: An approach based on content analysis and decision trees. Investigaciones Turísticas, 22, 121–147. https://doi.org/10.14198/INTURI2021.22.6
Garín-Muñoz, T., & Pérez-Amaral, T. (2011). Internet usage for travel and tourism. The case of Spain. Tourism Economics, 17(5), 1071–1085. https://doi.org/10.5367/te.2011.0080
Garín-Muñoz, T., Pérez-Amaral, T., & López, R. (2020). Consumer engagement in e-Tourism: Micro-panel data models for the case of Spain. Tourism Economics, 26(6), 853–872. https://doi.org/10.1177/1354816619852880
Ghaedi, M. (2022). Tourists’ Booking Behavior: Online Social Media Perspectives. Journal of Promotion Management, 28(6), 702–728. https://doi.org/10.1080/10496491.2021.2015509
Gratzer, M., Werthner, H., & Winiwarter, W. (2004). Electronic business in tourism. International Journal of Electronic Business, 2(5), 450. https://doi.org/10.1504/IJEB.2004.005878
Gratzer, M., Winiwarter, W., & Werthner, H. (2002). State of the Art in eTourism. 3rd South Eastern European Conference on E-Commerce 2002.
Greene, M. N., Morgan, P. H., & Foxall, G. R. (2017). Neural Networks and Consumer Behavior: Neural Models, Logistic Regression, and the Behavioral Perspective Model. The Behavior Analyst, 40(2), 393. https://doi.org/10.1007/S40614-017-0105-x
Gretzel, U., Fuchs, M., Baggio, R., Hoepken, W., Law, R., Neidhardt, J., Pesonen, J., Zanker, M., & Xiang, Z. (2020). e-Tourism beyond COVID-19: a call for transformative research. Information Technology and Tourism, 22(2), 187–203. https://doi.org/10.1007/s40558-020-00181-3
Guthrie, C., Fosso-Wamba, S., & Arnaud, J. B. (2021). Online consumer resilience during a pandemic: An exploratory study of e-commerce behavior before, during and after a COVID-19 lockdown. Journal of Retailing and Consumer Services, 61, 102570. https://doi.org/10.1016/j.jretconser.2021.102570
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning (2nd ed.). Springer New York. https://doi.org/10.1007/978-0-387-84858-7
Hernández, A. M. M., & Hernández, C. F. (2019). Access of women to economic autonomy through rural tourism on the island of la Palma. Investigaciones Turísticas, 18, 22–41. https://doi.org/10.14198/INTURI2019.18.02
Hu, M., & Song, H. (2020). Data source combination for tourism demand forecasting. Tourism Economics, 26(7), 1248–1265. https://doi.org/10.1177/1354816619872592
Inversini, A., & Masiero, L. (2014). Selling rooms online: The use of social media and online travel agents. International Journal of Contemporary Hospitality Management, 26(2), 272–292. https://doi.org/10.1108/IJCHM-03-2013-0140
Jun, S. H., Vogt, C. A., & Mackay, K. J. (2010). Online Information Search Strategies: A Focus On Flights and Accommodations. Journal of Travel & Tourism Marketing, 27(6), 579–595. https://doi.org/10.1080/10548408.2010.507151
Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1–2), 273–324. https://doi.org/10.1016/S0004-3702(97)00043-X
Li, Z. F., Zhou, Q., Chen, M., & Liu, Q. (2021). The impact of COVID-19 on industry-related characteristics and risk contagion. Finance Research Letters, 39, 101931. https://doi.org/10.1016/j.frl.2021.101931
Liébana-Cabanillas, F., & Lara-Rubio, J. (2017). Predictive and explanatory modeling regarding adoption of mobile payment systems. Technological Forecasting and Social Change, 120, 32–40. https://doi.org/10.1016/j.techfore.2017.04.002
Liu, Y., Li, Q., Edu, T., & Negricea, I. C. (2023). Exploring the Continuance Usage Intention of Travel Applications In the Case of Chinese Tourists. Journal of Hospitality & Tourism Research, 47(1), 6–32. https://doi.org/10.1177/1096348020962553
Lyu, S. O., & Hwang, J. (2021). A Discrete Choice Experimental Approach to Understand Sports Event Tourists’ In-Stadium Beer Consumption Preferences. Journal of Hospitality & Tourism Research, 45(7), 1324–1345. https://doi.org/10.1177/1096348021992099
Mahmood, H., Rehman, A. U., Sabir, I., Rauf, A., Afthanorhan, A., & Nawal, A. (2022). Restaurant Diners’ Switching Behavior During the COVID-19 Pandemic: Protection Motivation Theory. Frontiers in Psychology, 13. https://doi.org/10.3389/FPSYG.2022.833627
Mariani, M. M., & Baggio, R. (2022). Big data and analytics in hospitality and tourism: a systematic literature review. International Journal of Contemporary Hospitality Management, 34(1), 231–278. https://doi.org/10.1108/ijchm-03-2021-0301
Martín-Baos, J. Á., García-Ródenas, R., & Rodriguez-Benitez, L. (2021). Revisiting kernel logistic regression under the random utility models perspective. An interpretable machine-learning approach. Transportation Letters, 13(3), 151–162. https://doi.org/10.1080/19427867.2020.1861504
Mehmood, T. (2021). Regularized Feature Selection in Categorical PLS for Multicollinear Data. Mathematical Problems in Engineering, 2021, 1–8. https://doi.org/10.1155/2021/5561752
Mendieta-Aragón, A. (2022). Cambios en el comportamiento turístico tras la COVID-19: hacia un nuevo perfil del turista y del viaje de ocio en España. Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, 23(1), 37–51. https://doi.org/10.24309/recta.2022.23.1.03
Mendieta-Aragón, A. (2023). Efectos de la COVID-19 en el sector turístico de la Unión Europea: Análisis económico para el caso de España. Revista Universitaria Europea, 38(Enero-Junio), 41–70.
Miranda, D. D., & Briley, D. (2021). Digital tourist: Variables that define their purchasing behaviour. Investigaciones Turísticas, 21, 1–21. https://doi.org/10.14198/INTURI2021.21.1
Myles, A. J., Feudale, R. N., Liu, Y., Woody, N. A., & Brown, S. D. (2004). An introduction to decision tree modeling. Journal of Chemometrics, 18(6), 275–285. https://doi.org/10.1002/cem.873
Navío-Marco, J., Ruiz-Gómez, L. M., & Sevilla-Sevilla, C. (2018). Progress in information technology and tourism management: 30 years on and 20 years after the internet - Revisiting Buhalis & Law’s landmark study about eTourism. Tourism Management, 69, 460–470. https://doi.org/10.1016/j.tourman.2018.06.002
Neidhardt, J., & Werthner, H. (2018). IT and tourism: still a hot topic, but do not forget IT. Information Technology and Tourism, 20(1–4). https://doi.org/10.1007/s40558-018-0115-x
Nguyen, H. V., Tran, H. X., Van Huy, L., Nguyen, X. N., Do, M. T., & Nguyen, N. (2020). Online Book Shopping in Vietnam: The Impact of the COVID-19 Pandemic Situation. Publishing Research Quarterly, 36(3), 437. https://doi.org/10.1007/S12109-020-09732-2
Ong, A. K. S., Cleofas, M. A., Prasetyo, Y. T., Chuenyindee, T., Young, M. N., Diaz, J. F. T., Nadlifatin, R., & Redi, A. A. N. P. (2021). Consumer Behavior in Clothing Industry and Its Relationship with Open Innovation Dynamics during the COVID-19 Pandemic. Journal of Open Innovation: Technology, Market, and Complexity, 7(4), 211. https://doi.org/10.3390/joitmc7040211
Pejić-Bach, M. (2021). Editorial: Electronic Commerce in the Time of Covid-19 - Perspectives and Challenges. Journal of Theoretical and Applied Electronic Commerce Research, 16(1), i–i. https://doi.org/10.4067/S0718-18762021000100101
Phillips, P., Zigan, K., Santos Silva, M. M., & Schegg, R. (2015). The interactive effects of online reviews on the determinants of Swiss hotel performance: A neural network analysis. Tourism Management, 50, 130–141. https://doi.org/10.1016/j.tourman.2015.01.028
Pollak, F., Markovic, P., Vachal, J., & Vavrek, R. (2022). Analysis of E-Consumer Behavior During the COVID-19 Pandemic. In Intelligent Processing Practices and Tools for E-Commerce Data, Information, and Knowledge (pp. 95–114). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-78303-7_6
Pourfakhimi, S., Duncan, T., & Coetzee, W. (2019). A critique of the progress of eTourism technology acceptance research: time for a hike? Journal of Hospitality and Tourism Technology, 10(4), 689–746. https://doi.org/10.1108/JHTT-08-2018-0077
Pourfakhimi, S., Duncan, T., Ould, L., Allan, K., & Coetzee, W. (2020). Acceptance and Adoption of eTourism Technologies. In Z. Xiang, M. Fuchs, U. Gretzel, & W. Höpken (Eds.), Handbook of e-Tourism (pp. 1–31). https://doi.org/10.1007/978-3-030-05324-6_58-1
Purwanto, H., Sidanti, H., & Kadi, D. C. A. (2021). Traditional Market Transformation Into Digital Market (Indonesian Traditional Market Research Library). International Journal of Science, Technology & Management, 2(6), 1980–1988. https://doi.org/10.46729/ijstm.v2i6.384
Rahmanov, F., Mursalov, M., & Rosokhata, A. (2021). Consumer behavior in digital era: impact of COVID 19. Marketing and Management of Innovations, 5(2), 243–251. https://doi.org/10.21272/mmi.2021.2-20
Reverte, F. G., & Luque, P. D. (2021). Digital Divide in E-Tourism. In Z. Xiang, M. Fuchs, U. Gretzel, & W. Höpken (Eds.), Handbook of e-Tourism (pp. 1–21). Springer, Cham. https://doi.org/10.1007/978-3-030-05324-6_109-1
Rosenblatt, F. (1961). Principles of neurodynamics. Perceptrons and the theory of brain mechanisms. https://apps.dtic.mil/sti/citations/AD0256582
Sharma, S., Singh, G., Pratt, S., & Narayan, J. (2020). Exploring consumer behavior to purchase travel online in Fiji and Solomon Islands? An extension of the UTAUT framework. International Journal of Culture, Tourism, and Hospitality Research, 15(2), 227–247. https://doi.org/10.1108/IJCTHR-03-2020-0064
Sheth, J. (2020). Impact of Covid-19 on consumer behavior: Will the old habits return or die? Journal of Business Research, 117, 280–283. https://doi.org/10.1016/j.jbusres.2020.05.059
Solano Sánchez, M. Á., Nuñez Tabales, J. M., & Caridad y López del Río, L. (2022). Nuevos tipos de alojamiento: apartamentos turísticos y determinantes de valoración en el precio de la estancia. Investigaciones Turísticas, 23, 94–111. https://doi.org/10.14198/INTURI2022.23.5
Timotius, E., & Octavius, G. S. (2021). Global Changing of Consumer Behavior to Retail Distribution due to Pandemic of COVID-19: A Systematic Review. Journal of Distribution Science, 19(11), 69–80. https://doi.org/10.15722/JDS.19.11.202111.69
Ukpabi, D. C., & Karjaluoto, H. (2017). Consumers’ acceptance of information and communications technology in tourism: A review. Telematics and Informatics, 34(5), 618–644. https://doi.org/10.1016/j.tele.2016.12.002
van Nuenen, T., & Scarles, C. (2021). Advancements in technology and digital media in tourism. Tourist Studies, 21(1), 119–132. https://doi.org/10.1177/1468797621990410
Vollero, A., Sardanelli, D., & Siano, A. (2021). Exploring the role of the Amazon effect on customer expectations: An analysis of user-generated content in consumer electronics retailing. Journal of Consumer Behaviour, 1–12. https://doi.org/10.1002/cb.1969
Vu, H. L., Ng, K. T. W., Richter, A., & An, C. (2022). Analysis of input set characteristics and variances on k-fold cross validation for a Recurrent Neural Network model on waste disposal rate estimation. Journal of Environmental Management, 311, 114869. https://doi.org/10.1016/j.jenvman.2022.114869
Walker, K. W., & Jiang, Z. (2019). Application of adaptive boosting (AdaBoost) in demand-driven acquisition (DDA) prediction: A machine-learning approach. The Journal of Academic Librarianship, 45(3), 203–212. https://doi.org/10.1016/j.acalib.2019.02.013
Wen, L., Liu, C., & Song, H. (2019). Forecasting tourism demand using search query data: A hybrid modelling approach. Tourism Economics, 25(3), 309–329. https://doi.org/10.1177/1354816618768317
Xu, X., Law, R., Chen, W., & Tang, L. (2016). Forecasting tourism demand by extracting fuzzy Takagi–Sugeno rules from trained SVMs. CAAI Transactions on Intelligence Technology, 1(1), 30–42. https://doi.org/10.1016/j.trit.2016.03.004
Zhang, J., Cui, X., Cai, W., & Shao, X. (2018). A variable importance criterion for variable selection in near-infrared spectral analysis. Science China Chemistry, 62(2), 271–279. https://doi.org/10.1007/S11426-018-9368-9
Zhao, X., Yan, X., Yu, A., & Van Hentenryck, P. (2020). Prediction and behavioral analysis of travel mode choice: A comparison of machine learning and logit models. Travel Behaviour and Society, 20, 22–35. https://doi.org/10.1016/j.tbs.2020.02.003
Descargas
Estadísticas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Adrián Mendieta-Aragón, Teresa Garín-Muñoz
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.