Inteligencia artificial en la industria de la hospitalidad latinoamericana: una revisión de alcance
DOI:
https://doi.org/10.14198/INTURI.25777Palabras clave:
Turismo, Gastronomía, Machine Learning, LATAM, Predecir, Producir, Promocionar, ProporcionarResumen
Este trabajo tiene como objetivo determinar la aplicación de la inteligencia artificial en la industria de la hospitalidad en Latinoamérica. Para lograrlo, se optó por un enfoque de revisión de alcance, adecuado para casos como éste, en los que la literatura existente no ha sido revisada de manera exhaustiva o presenta una naturaleza compleja y heterogénea. En este estudio se seleccionaron 35 documentos que cumplían con los criterios: ser de autores latinoamericanos y con temática de inteligencia artificial aplicada en la región. Al realizar el análisis con la metodología de las 4 P’s (Predecir, Producir, Promocionar y Proporcionar) se obtuvo un total de 86 contribuciones, de éstas el primer lugar con 42% se concentra en proporcionar experiencias a clientes, 22% en predecir información de valor para la toma de decisiones, 19% en promocionar sus ofertas y el 17% en mejorar la producción de servicios y productos. Además, se encontró que las técnicas de inteligencia artificial más empleadas en el sector de la hospitalidad son aprendizaje de máquina y procesamiento de lenguaje natural. Sin embargo, se detectó que las investigaciones sobre esta temática en los países latinoamericanos representan menos del 3,5% de la producción global. Por tanto, con este trabajo se pretende contribuir a una mayor comprensión de la aplicación de la inteligencia artificial en la industria de la hospitalidad y turismo en América Latina, abarcando tanto la perspectiva del cliente como la empresarial. No obstante, resalta la urgencia de fortalecer la investigación en este ámbito para impulsar el crecimiento y la innovación de la industria de la hospitalidad y el turismo en la región, dado su papel fundamental en la economía de estos países.
Citas
A European approach to artificial intelligence | Shaping Europe's digital future (s.f.). Consultado el 17 de enero 2023, de https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
Aguilar Bucheli, A.D., Borja Espinoza, M.A., Cadena Vargas, E.F. et. al. (2023). Artificial intelligence in medical education: Latin American context. Metro Ciencia, 31(2), 21-34. Consultado el 30 de junio de 2023, en https://doi.org/10.47464/MetroCiencia/vol31/2/2023/21-34
Alotaibi, R., Ali, A., Alharthi, H. y Almehamdi, R. (2020). AI Chatbot for Tourist Recommendations: A Case Study in the City of Jeddah, Saudi Arabia. International Journal of Interactive Mobile Technologies (iJIM), 14(19), 18-30. https://doi.org/10.3991/ijim.v14i19.17201
Alvarado-Vásquez, Biel Piero E. y Matía, Fernando. (2020). A tour-guide robot: Moving towards interaction with humans. Eng. Appl. Artif. Intell, 88, https://doi.org/10.1016/j.engappai.2019.103356
Alvarado, A., Baldizán, O., Goncalves, M. y Vidal, M. E. (2013). FRAGOLA: Fabulous RAnking of GastrOnomy LocAtions. En On the Move to Meaningful Internet Systems: OTM 2013 Workshops. Confederated International Workshops: OTM Academy, OTM Industry Case Studies Program, ACM, EI2N, ISDE, META4eS, ORM, SeDeS, SINCOM, SMS, and SOMOCO 2013, Graz, Austria, 9-13 de septiembre, 2013, Proceedings (pp. 408-413). Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-41033-8_51
Álvarez-Carmona, M. Á, Aranda, R., Rodríguez-Gonzalez, A. Y., Fajardo-Delgado, D., Sánchez, M. G., Pérez-Espinosa, H., Martínez-Miranda, J., Guerrero-Rodríguez, R., Bustio-Martínez, L. y Díaz-Pacheco, Á. (2022). Natural language processing applied to tourism research: A systematic review and future research directions, Journal of King Saud University - Computer and Information Sciences, 34(10), 10125-10144, https://doi.org/10.1016/j.jksuci.2022.10.010
Álvarez Gómez, S. D., Machuca Vivar, S. A. y Salas Medina, P. E. (2021). K-means based method for handling unlabeled data. Revista Universidad y Sociedad, 13(S3), 452-458.
Al-Wazzan, A., Al-Farhan, R., Al-Ali, F. y El-Abd, M. (2016). Tour-guide robot. 2016 International Conference on Industrial Informatics and Computer Systems (CIICS), 1-5, https://doi.org/10.1109/ICCSII.2016.7462397
Amorim, A., Góes, L. F., Da Silva, A. R. y França, C. (2017). Creative Flavor Pairing: Using RDC Metric to Generate and Assess Ingredients Combination. International Conference on Innovative Computing and Cloud Computing (ICCC), 33-40
Armas-Arias, S., Páez-Quinde, C., Ballesteros-López, L. y López-Pérez, S. (2022). Decision Trees for the Analysis of Digital Marketing in the Tourism Industry: Tungurahua Case Study. Lecture Notes in Networks and Systems, 406 LNNS, 351–361. https://doi.org/10.1007/978-3-030-96046-9_26
Bangare, M. L., Bangare, P. M., Ramirez-Asis, E., Jamanca-Anaya, R., Phoemchalard, C. y Bhat, D. A. R. (2022). Role of machine learning in improving tourism and education sector. Materials Today: Proceedings, 51, 2457-2461.
Barco, G. M., Estéfano, G., Rivera, R., Irazú, D. y Farías, H. (2022). Sentiment Analysis in Spanish Reviews: Dataket Submission on REST-Mex 2022. http://ceur-ws.org
Bedoya, M. G., Montoya, D. R., Tabilo-Munizaga, G., Pérez-Won, M. y Lemus-Mondaca, R. (2022). Promising perspectives on novel protein food sources combining artificial intelligence and 3D food printing for food industry. Trends in Food Science and Technology, 128, 38-52.
Bishop, C. M. (2006). Pattern recognition and Machine Learning. Springer.
Brida, J. G., Lanzilotta, B., Moreno, L. y Santiñaque, F. (2022). A non-linear approximation to the distribution of total expenditure distribution of cruise tourists in Uruguay. Tourism Management, 69, 62-68. https://doi.org/10.1016/j.tourman.2018.05.006
Bughin, J., Hazán, E., Ramaswamy, S., Chui, M., Allas, T., Dahlström, P., Henke, N. y Trench, M. (2017). Artificial intelligence: the next digital frontier? https://doi.org/10.1016/S1353-4858(17)30039-9
Caicedo-Torres, W. y Payares, F. (2016). A machine learning model for occupancy rates and demand forecasting in the hospitality industry. En Advances in Artificial Intelligence-IBERAMIA 2016: 15th Ibero-American Conference on AI, San José, Costa Rica, 23-25 de noviembre, 2016, Proceedings 15 (pp. 201-211). Springer International Publishing. https://doi.org/10.1007/978-3-319-47955-2_17
Campos, D., Silva, R. R. y Bernardino, J. (2020). Text mining in hotel reviews: Impact of words restriction in text classification. Systemics, Cybernetics and Informatics, 18(5), 49-56. https://doi.org/10.5220/0008346904420449
Castro, L. y Aciar, S. (2012). Prototype of a tourism recommender system. En 2012 XXXVIII Conferencia Latinoamericana en Informática (CLEI) (pp. 1-7). IEEE. https://doi.org/10.1109/CLEI.2012.6427157
Cha, K.J. (2014). Experimental evaluation of an expert system for travel recommender systems. International Journal of Software Engineering and its Applications, 8, 115-128. https://doi.org/10.14257/ijseia.2014.8.4.13
Chen, Z. B. y Liu, Y. (2020). Application of face recognition in smart hotels. En 2020 IEEE Eurasia Conference on IoT, Communication and Engineering (ECICE) (pp. 180-182). https://doi.org/10.1109/ECICE50847.2020.9302014
Chobar, A.P., Adibi, M.A. y Kazemi, A. (2022). Multi-objective hub-spoke network design of perishable tourism products using combination machine learning and meta-heuristic algorithms. Environ Dev Sustain. https://doi.org/10.1007/s10668-022-02350-2
Choi, Y., Choi, M., Oh, M. y Kim, S. (2020). Service robots in hotels: understanding the service quality perceptions of human-robot interaction. Journal of Hospitality Marketing & Management, 29(6), 613-635. https://doi.org/10.1080/19368623.2020.1703871
Chui, M. y Manyika, J. (2015). Competition at the digital edge: "hyperscale" businesses, McKinsey quarterly.
de Lima, J. I. M. P., Pessanha, G. R. G., de Araújo, M. V. P., de Almeida Alves, R. C., Cesário, M. F. P. y de Oliveira Rocha, A. C. F. (2022). Place branding Pernambuco: analysis of the feelings of the users through Instagram hashtags. Revista Brasileira de Marketing, 21(1), 154–184. https://doi.org/10.5585/remark.v21i1.20578
de Souza, J. G. R., de Paiva Oliveira, A. y Moreira, A. (2018). Development of a Brazilian Portuguese Hotel's Reviews Corpus. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11122 LNAI, 353-361. https://doi.org/10.1007/978-3-319-99722-3_36
Doborjeh, Z., Hemmington, N., Doborjeh, M. y Kasabov, N. (2022). Artificial intelligence: a systematic review of methods and applications in hospitality and tourism. International Journal of Contemporary Hospitality Management, 34(3), 1154-1176. https://doi.org/10.1108/IJCHM-06-2021-0767
Egger, R., Gokce, E. (2022). Natural Language Processing (NLP): An Introduction. En R. Egger (eds.), Applied Data Science in Tourism. Tourism on the Verge. Springer, Cham. https://doi.org/10.1007/978-3-030-88389-8_15
Essien, A. y Chukwukelu, G. (2022). Deep learning in hospitality and tourism: a research framework agenda for future research. International Journal of Contemporary Hospitality Management. https://doi.org/10.1108/IJCHM-09-2021-1176
European Commission (2020). On Artificial Intelligence - A European approach to excellence and trust. https://ec.europa.eu/commission/sites/beta-political/files/political-guidelines-next-commission_en.pdf.
Fayissa, B., Nsiah, C. y Tadesse, B. (2009). Tourism and economic growth in Latin American countries (LAC): Further empirical evidence. Department of Economics and Finance Working Paper Series, 1, 26.
Fayissa, B., Nsiah, C. y Tadesse, B. (2011). Research Note: Tourism and Economic Growth in Latin American Countries, Further Empirical Evidence, 17(6), 1365-1373. https://doi.org/10.5367/te.2011.0095
Feierherd, G., González, F., Viera, L., Soler, R., Romano, L., Delía, L. y Depetris, B. (2019). Combining artificial intelligence services for the recognition of flora photographs: Uses in augmented reality and tourism. En Computer Science–CACIC 2018: 24th Argentine Congress, Tandil, Argentina, 8–12 de octubre, 2018, Revised Selected Papers 24 (367-375). Springer International Publishing. https://doi.org/10.1007/978-3-030-20787-8_26
Giarratano, J. C. y Riley, G. D. (2018). Expert systems: Principles and programming. Cengage Learning.
Giotis, G. y Papadionysiou, E. (2022). The Role of Managerial and Technological Innovations in the Tourism Industry: A Review of the Empirical Literature. Sustainability, 14, 5182. https://doi.org/10.3390/su14095182
Gómez-Espinos, V., Muñiz-Sanchez, V. y Pastor López-Monroy, A. (2022). AutoML and Ensemble Transformers for Sentiment Analysis in Mexican Tourism Texts. https://sites.google.com/cicese.edu.mx/rest-mex-2022/home?authuser=0#h.i5o10i3si9z4
Goodfellow, I., Bengio, Y. y Courville, A. (2016). Deep learning. MIT Press.
Grande-Ramírez, J.R.; Roldán-Reyes, E.; Aguilar-Lasserre, A.A. y Juárez-Martínez, U. (2022). Integration of Sentiment Analysis of Social Media in the Strategic Planning Process to Generate the Balanced Scorecard. Appl. Sci., 2022, 12, 12307. https://doi.org/10.3390/app122312307
Guerrero-Quiñonez, A. J., Bedoya-Flores, M. C., Mosquera-Quiñonez, E. F., Mesías-Simisterra, Á. E. y Bautista-Sánchez, J. V. (2023). Artificial Intelligence and its scope in Latin American higher education. Ibero-American Journal of Education & Society Research, 3(1), 264-271. https://doi.org/10.56183/iberoeds.v3i1.627
Hayat, K. (2023). Leveraging Artificial Intelligence in Hospitality and Tourism for Success. Teaching Cases in Tourism, Hospitality and Events, 214. https://doi.org/10.1079/9781800621022.0019
Holzinger, A., Kieseberg, P., Weippl, E. y Tjoa, A. M. (2018). Current advances, trends and challenges of machine learning and knowledge extraction: From machine learning to explainable AI. Lecture Notes in Computer Science. 11015, 1-8. https://doi.org/10.1007/978-3-319-99740-7_1
Hsu, C. C. (2018). Artificial intelligence in smart tourism: A conceptual framework. En Proceedings of the 18th International Conference on Electronic Business (pp. 124- 133). ICEB, Guilin, China, 2-6 de diciembre.
Huang, A., Chao, Y., Velasco, M., Bilgihan, A. y Wei, W. (2021). When artificial intelligence meets the hospitality and tourism industry: an assessment framework to inform theory and management. Journal of Hospitality and Tourism Insights, 5(5), 1080-1100. https://doi.org/10.1108/JHTI-01-2021-0021
Huang, L., Zheng, W. (2021). Novel deep learning approach for forecasting daily hotel demand with agglomeration effect. International Journal of Hospitality Management, Elsevier BV, 98, 103038. https://doi.org/10.1016/j.ijhm.2021.103038
Ivanov, S. y Webster, C. (2019). Conceptual Framework of the Use of Robots, Artificial Intelligence and Service Automation in Travel, Tourism, and Hospitality Companies. En S. Ivanov y C. Webster (Eds.). Robots, Artificial Intelligence, and Service Automation in Travel, Tourism and Hospitality, (pp. 7-37). Emerald Publishing Limited, Bingley, https://doi.org/10.1108/978-1-78756-687-320191001
Ivanov, S., Gretzel, U., Berezina, K. & Sigala, M. y Webster, C. (2019). Progress on robotics in hospitality and tourism: a review of the literature. Journal of Hospitality and Tourism Technology. https://doi.org/10.1108/JHTT-08-2018-0087
Jang, W.(E)., Kim, S., Chun, J.W., Jung, A.-R. y Kim, H. (2023). Role of recommendation sizes and travel involvement in evaluating travel destination recommendation services: comparison between artificial intelligence and travel experts. Journal of Hospitality and Tourism Technology, (Vol. ahead-of-print No. ahead-of-print). https://doi.org/10.1108/JHTT-01-2022-0013
Jamaluddin, Z. y Rahmat, A. K. (2022). Artificial intelligence technology in travel, tourism and hospitality: current and future developments. Technology Application in Aviation, Tourism and Hospitality: Recent Developments and Emerging Issues (pp. 169–177). Springer. https://doi.org/10.1007/978-981-19-6619-4_12
Jurafsky, D. y Martin, J. H. (2019). Speech and language processing, (3a. ed.). Pearson.
Jus, N., Tsering, C. y Mitcham, J. (2022). World Travel and Tourism Council: Staff Shortages 2022.
Kühl, N., Goutier, M., Hirt, R. y Satzger, G. (2019). Machine Learning in Artificial Intelligence: Towards a Common Understanding. Proceedings of the 52nd Hawaii International Conference on System Sciences, pp. 5236-5245, https://doi.org/10.24251/HICSS.2019.630
Lacárcel, F. J. S. (2022). Main uses of artificial intelligence in digital marketing strategies linked to tourism. Journal of Tourism, Sustainability and Well-being, 10(3), 215-226. https://doi.org/10.34623/mppf-r253
Lee, H., Jung, T.H., tom Dieck, M.C. y Chung, N. (2020). Experiencing immersive virtual reality in museums. Inf. Manag., 57, 103229. https://doi.org/10.1016/j.im.2019.103229
Leung, X. Y. (2020). Technology-enabled service evolution in tourism: a perspective article. Tourism Review, 75(1), 279-282. https://doi.org/10.1108/TR-06-2019-0229
Li, N., Yang, X., Wong, I. K. A., Law, R., Xu, J. Y. y Zhang, B. (2023). Automating tourism online reviews: a neural network based aspect-oriented sentiment classification. Journal of Hospitality and Tourism Technology, 14(1), 1-20. https://doi.org/10.1108/JHTT-03-2021-0099
Li, D., Wang, S. y Zhao, A. (2022). Evaluation of Tourism Food Safety and Quality with Neural Networks. Computational intelligence and neuroscience, 2022, https://doi.org/10.1155/2022/9493415
López-Chau, A., Muñoz-Chavez, J.P. y Valle-Cruz, D. (2022). Percepción de la calidad en restaurantes: un análisis mixto con redes neuronales. Estudios Gerenciales, 38(165), 449-463. https://doi.org/10.18046/j.estger.2022.165.5235
Lv, H., Shi, S. y Gursoy, D. (2022). A look back and a leap forward: a review and synthesis of big data and artificial intelligence literature in hospitality and tourism. Journal of Hospitality Marketing & Management, 31(2), 145-175. https://doi.org/10.1080/19368623.2021.1937434
Magalhaes, A. M., Baracho, R. M. A. y Mandl, T. (2020). Tourism profiling: a semi-automatic classification model of points of interest. Proceedings of the 24th World Multi Conference on Systemics, Cybernetics and Informatics, 96-101.
Mays, N., Roberts, E. y Popay, J. (2001). Synthesising research evidence. En N. Fulop, P. Allen, A. Clarke y N. Black (Eds.), Studying the Organisation and Delivery of Health Services (pp. 188-220). Routledge.
Medina, B., Pineda, A., Guzmán, G., Garay Jimenez, L. I. y Rivera, M. F. M. (2020). Local tours recommendation applying machine learning in social networks. En Telematics and Computing: 9th International Congress, WITCOM 2020, Puerto Vallarta, México, 2–6 de noviembre, 2020, Proceedings 9 (pp. 428-440). Springer International Publishing. https://doi.org/10.1007/978-3-030-62554-2_31
Mehraliyev, F., Chan, I.C.C. y Kirilenko, A.P. (2022). Sentiment analysis in hospitality and tourism: a thematic and methodological review. International Journal of Contemporary Hospitality Management, 34(1), 46-77. https://doi.org/10.1108/IJCHM-02-2021-0132
Mendoza, Á. G. F., Arce, A. Z. y Holguín, J. S. V. (2021). Turismo en tiempo de pandemias. Covid-19 en Latinoamérica. Turismo y Sociedad, 29, 129–155. https://doi.org/10.18601/01207555.n29.06
Mendoza, Á. G. F. y Rivera Mateos, M. (2018). La reconstrucción de destinos turísticos degradados en América Latina: Realidades y necesidades en materia de planificación turística y cooperación entre actores en la provincia de Manabí (Ecuador). América Latina en las últimas décadas: Procesos y Retos, 2018, ISBN 978-84-9044-317-0,1139-1154. https://dialnet.unirioja.es/servlet/articulo?codigo=7192752&info=resumen&idioma=ENG
Mengual Torres, S.G., May Tzuc, O., Aguilar-Castro, K.M., Castillo Téllez, M., Ovando Sierra, J., Cruz-y Cruz, A.d.R. y Barrera-Lao, F.J. Analysis of Energy and Environmental Indicators for Sustainable Operation of Mexican Hotels in Tropical Climate Aided by Artificial Intelligence. Buildings 2022, 12, 1155. https://doi.org/10.3390/buildings12081155
Mery, D., Pedreschi, F., & Soto, A. (2013). Automated Design of a Computer Vision System for Visual Food Quality Evaluation. Food and Bioprocess Technology, 6(8), 2093–2108. https://doi.org/10.1007/s11947-012-0934-2
Meza, J. V. M. y Perez, G. E. (2022). The role of artificial intelligence in Latin Americas energy transition. IEEE Latin America Transactions, 20(11), 2404-2412. https://doi.org/10.1109/TLA.2022.9904766
Milman, A. y Tasci, A.D.A. (2022). Consumer reactions to different robotic servers in theme parks. Journal of Hospitality and Tourism Technology, 13(2), 314-332. https://doi.org/10.1108/JHTT-03-2021-0102
Nayyar, A., Mahapatra, B.,Le, D.-N. y Suseendran, G. (2018). Virtual Reality (VR) & Augmented Reality (AR) technologies for tourism and hospitality industry. International Journal of Engineering and Technology. https://doi.org/10.14419/ijet.v7i2.21.11858
Nuno, G., Mbunge, E., Belo, M., Fashoto, S. G., Pronto, J. M., Metfula, A. S., Carvalho, L. C., Akinnuwesi, B. A. y Chiremba, T. R. (2022). Emphasizing the Digital Shift of Hospitality Towards Hyper-Personalization: Application of Machine Learning Clustering Algorithms to Analyze Travelers. En N. Gustavo, J. Pronto, L. Carvalho, & M. Belo (Eds.), Optimizing Digital Solutions for Hyper-Personalization in Tourism and Hospitality (pp. 1-19). IGI Global. https://doi.org/10.4018/978-1-7998-8306-7.ch001
Oday, A., Ozturen, A., Ilkan, M. y Abubakar, A. M. (2021). Do eReferral, eWOM, ¿familiarity and cultural distance predict enrollment intention? An application of an artificial intelligence technique. Journal of Hospitality and Tourism Technology, 12(3), 471-488. https://doi.org/10.1108/JHTT-01-2020-0007
Oliveira Lima, T. de, Colaco, M., Kleber, K. H., Dias de J., I., y de Oliveira, F. R. (2021). A Big Data Experiment to Evaluate the Effectiveness of Traditional Machine Learning Techniques Against LSTM Neural Networks in the Hotels Clients Opinion Mining. Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021, 5199-5208. https://doi.org/10.1109/BigData52589.2021.9671939
Oliveira, P. S. G. de, Yoshiura, T. G. y Alves, C. A. (2020). Projeto de machine learning: compreensão da hospitalidade como diferencial competitivo na gestão de restaurantes. Revista De Gestão E Projetos, 11(3), 26-45. https://doi.org/10.5585/gep.v11i3.18748
OMT (2023). Dashboard de datos turísticos de la OMT. Recursos y Datos. https://www.unwto.org/es/datos-turismo/resultados-turisticos-globales-regionales
Parra, H., Valderrama, D.A., Moreno, S. (2022). Analysis of Spatial Concentration of Accommodation Establishments Using Machine Learning Techniques and Spatial Analysis Tools. Journal of Environmental Management and Tourism, 8(64), 2255-2262. https://doi.org/10.14505/jemt.13.8(64).18
Penagos-Londoño, G. I., Rodriguez-Sanchez, C., Ruiz-Moreno, F. y Torres, E. (2021). A machine learning approach to segmentation of tourists based on perceived destination sustainability and trustworthiness. Journal of Destination Marketing and Management, 19. https://doi.org/10.1016/j.jdmm.2020.100532
Pereira, L. N. y Cerqueira, V. (2022). Forecasting hotel demand for revenue management using machine learning regression methods. Current Issues in Tourism, 25(17), 2733–2750. https://doi.org/10.1080/13683500.2021.1999397
Peters, M. D. J., Godfrey, C. M., Khalil, H., McInerney, P., Parker, D., y Soares, C. B. (2015). Guidance for conducting systematic scoping reviews. International Journal of Evidence-Based Healthcare, 13(3), 141-146. https://doi.org/10.1097/XEB.0000000000000050
Polyzos, S., Samitas, A. y Spyridou, A. E. (2021). Tourism demand and the COVID-19 pandemic: An LSTM approach. Tourism Recreation Research, 46(2), 175-187. https://doi.org/10.1080/02508281.2020.1777053
Quevedo V., A. N., Garcia Arias, N. y Cecilia Campaña Muñoz, L. (2020). Neutrosophic K-means Based Method for Handling Unlabeled Data. Neutrosophic Sets and Systems.
Rakesh, M. V., Kumar, S. P. y Aishwarya, R. (2022). Hotel Booking Cancelation Prediction using ML algorithms. En 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS) (pp. 466-471), https://doi.org/10.1109/ICAIS53314.2022.9742843
Ramos-Carrasco, R., Galvez-Diaz, S., Nuñez-Ponce, V. y Alvarez-Merino, J. (2019). Artificial neural networks to estimate the forecast of tourism demand in Peru. 2019 IEEE Sciences and Humanities International Research Conference (SHIRCON). https://doi.org/10.1109/SHIRCON48091.2019.9024873
Rivolli, A., Soares, C. y de Carvalho, A. C. P. L. F. (2018). Enhancing multilabel classification for food truck recommendation. Expert Systems, 35(4). https://doi.org/10.1111/exsy.12304
Ruiz-Rosero, J., Ramirez-Gonzalez, G. y Viveros-Delgado, J. (2019). Software survey: ScientoPy, a scientometric tool for topics trend analysis in scientific publications. Scientometrics, (pp. 1165–1188). https://doi.org/10.1007/s11192-019-03213-w
Ruiz-Rosero, J., Ramírez-González, G., & Viveros-Delgado, J. (2019). Software survey: ScientoPy, a scientometric tool for topics trend analysis in scientific publications. Scientometrics, 121(2), 1165-1188. https://doi.org/10.1007/s11192-019-03213-w
Sael, Nada y Aqel, Musbah. (2015). ESTJ: An Expert System for Tourism in Jordan. Procedia Computer Science. 65. 821-826. https://doi.org/10.1016/j.procs.2015.09.032
Samara, D., Magnisalis, I. y Peristeras, V. (2020). Artificial intelligence and big data in tourism: a systematic literature review. Journal of Hospitality and Tourism Technology, 11(2), 343–367. Emerald Group Holdings Ltd. https://doi.org/10.1108/JHTT-12-2018-0118
Santamaria-Granados, L., Mendoza-Moreno, J. F. y Ramirez-Gonzalez, G. (2021). Tourist recommender systems based on emotion recognition—a scientometric review. Future Internet, 13(1), 1-38. https://doi.org/10.3390/fi13010002
Santos Vieira, F. A., Vinhas Santos, D. T., Bragagnolo, C., Campos-Silva, J. V., Henriques Correia, R. A., Jepson, P., Mendes Malhado, A. C., y Ladle, R. J. (2021). Social media data reveals multiple cultural services along the 8.500 kilometers of Brazilian coastline. Ocean and Coastal Management, 214. https://doi.org/10.1016/j.ocecoaman.2021.105918
Santos, Y. D. C. D. F., Saqui, D., y dos Santos, P. C. (2021). A method based on machine learning to predict meal production in university restaurants. ACM International Conference Proceeding Series. https://doi.org/10.1145/3466933.3466948
Saydam, M. B., Arici, H. E. y Koseoglu, M. A. (2022). How does the tourism and hospitality industry use artificial intelligence? A review of empirical studies and future research agenda. Journal of Hospitality Marketing & Management, 31(8), 908-936. https://doi.org/10.1080/19368623.2022.2118923
Sharma, S., Rawal, Y. S., Soni, H. y Batabyal, D. (2023). Technological impacts of AI on hospitality and tourism industry. Proceedings of International Conference on Data Science and Applications: ICDSA 2022 (Vol. 1, 71–78). https://doi.org/10.1007/978-981-19-6631-6_6
Siciliano, B. y Sciavicco, L. (2016). Robotics: Modelling, Planning and Control. Springer.
Senefonte, H. C. M., Delgado, M. R., Luders, R. y Silva, T. H. (2022). PredicTour: Predicting Mobility Patterns of Tourists Based on Social Media User's Profiles. IEEE Access, 10, 9257–9270. https://doi.org/10.1109/ACCESS.2022.3143503
Szeliski, R. (2011). Computer vision algorithms and applications. Springer. https://doi.org/10.1007/978-1-84882-935-0
Tenemaza, M., Limaico, J. y Luján-Mora, S. (2021). Tourism Recommender System Based on Natural Language Classifier. En Advances in Artificial Intelligence, Software and Systems Engineering: Proceedings of the AHFE 2021 Virtual Conferences on Human Factors in Software and Systems Engineering, Artificial Intelligence and Social Computing, and Energy, 25-29 de julio, 2021, USA (pp. 230-235). Springer International Publishing. https://doi.org/10.1007/978-3-030-80624-8_29
Torrico-Pacherre, F., Maguiña-Mendoza, I. y Ugarte, W. (2022). Detecting Turistic Places with Convolutional Neural Networks. International Conference on Enterprise Information Systems. (Vol. 1, 471-478). https://doi.org/10.5220/0010992500003179
Travel & Tourism Economic Impact | World Travel & Tourism Council (WTTC). (s.f.). Consultado el 17 de noviembre 2022, en https://wttc.org/research/economic-impact
Tsaih, R.-H. y Hsu, C. C. (2018). Artificial Intelligence in Smart Tourism: A Conceptual Framework. En Proceedings of the 18th International Conference on Electronic Business (pp. 124-133). ICEB, Guilin, China, 2-6 de diciembre.
Tuomi, A., Tussyadiah, I. P. y Stienmetz, J. (2021). Applications and Implications of Service Robots in Hospitality. Cornell Hospitality Quarterly, 62(2), 232-247. https://doi.org/10.1177/1938965520923961
Ukpabi, D.C., Aslam, B. y Karjaluoto, H. (2019). Chatbot Adoption in Tourism Services: A Conceptual Exploration. Robots, Artificial Intelligence, and Service Automation in Travel, Tourism and Hospitality. https://doi.org/10.1108/978-1-78756-687-320191006
Urzaiz, G., Hervás, R., Villarreal, V. y Bravo, J. (2012). Communication platform to enable collaborative tourism applications. En Ubiquitous Computing and Ambient Intelligence: 6th International Conference, UCAmI 2012, Vitoria-Gasteiz, Spain, 3-5 de diciembre, 2012. Proceedings 6 (pp. 367-370). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-35377-2_51
Villaseñor-Aguilar, M.-J., Bravo-Sánchez, M.-G., Padilla-Medina, J.-A., Vázquez-Vera, J. L., Guevara-González, R.-G., García-Rodríguez, F.-J. y Barranco-Gutiérrez, A.-I. (2020). A Maturity Estimation of Bell Pepper (Capsicum annuum L.) by Artificial Vision System for Quality Control. Applied Sciences, 10(15), 5097. https://doi.org/10.3390/app10155097
World Travel & Tourism Council. (n.d.). Travel & Tourism Economic Impact. WTTC Research. Consultado el 2 de julio de 2023, en https://wttc.org/research/economic-impact
Xin, L.Y., Yiteng, L., Jain, R., Van, T.T.H., Lim, W. y Yilin, Z. (2023). Marketing Segmentation and Targeted Marketing for Tourism. En Y.Y. Nguwi (ed.). Tourism Analytics Before and After COVID-19. Springer, Singapore. https://doi.org/10.1007/978-981-19-9369-5_9
Yan, L. (2023). Research on English Chinese Translation System for Tourism Based on Globish. En M.A. Jan y F. Khan (eds.). Application of Big Data, Blockchain, and Internet of Things for Education Informatization. BigIoT-EDU 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, (Vol. 467). Springer, Cham. https://doi.org/10.1007/978-3-031-23944-1_3
Zháo, M. A. y Jayadi, R. (2021). Forecasting daily visitors and menu demands in an Indonesian chain restaurant using support vector regression machine. En 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS) (pp. 1-6). https://doi.org/10.1109/AIMS52415.2021.9466036
Zambrano, A., Padilla, O., Toulkeridis, T., Zapata, J., Ordoñez, E. y Mato, F. (2017). Software constraints for caves' virtual environments modeling. En 2017 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1-5). IEEE. https://doi.org/10.1109/SSCI.2017.8285407
Zanirato Maia, S., Applications, J., Renn, O., Max Bergman, M., de Souza Zanirato Maia, J., Paula Arantes Bueno, A. y Ricardo Sato, J. (2023). Applications of Artificial Intelligence Models in Educational Analytics and Decision Making: A Systematic Review. World 2023, 4(2), 288–313. https://doi.org/10.3390/world4020019
Descargas
Estadísticas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Ismael Castillo-Ortiz, Elizabeth Guevara Martínez, Carmen Villar-Patiño
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.